Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera.
نویسندگان
چکیده
Interferon-α (IFNα) is an effective treatment of patients with myeloproliferative neoplasms (MPNs). In addition to inducing hematological responses in most MPN patients, IFNα reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNα on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNα on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNα treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNα treatment induces cell cycle activation of Jak2V617F mutant long-term hematopoietic stem cells and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNα on Jak2V617F mutant and normal hematopoiesis and suggest that IFNα achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNα and targeting the proliferating downstream progeny with JAK2 inhibitors or cytotoxic chemotherapy.
منابع مشابه
Evaluation of JAK2V617F mutation prevalence in myeloproliferative neoplasm by AS-RT-PCR
Abstract Objective JAK2 is a non-receptor tyrosine kinase that plays a major role in myeloid disorders. JAK2V617F mutation is characterized by a G to T transverse at nucleotide 1849 in exon 12 of the JAK2 gene, located on the chromosome 9p, leading to a substitution of valine to phenylalanine at amino acid position 617 in the JAK2 protein. Methods In this study we evaluated RNA from 89 pati...
متن کاملDistinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera.
In the current model of the pathogenesis of polycythemia vera (PV), the JAK2V617F mutation arises in hematopoietic stem cells (HSCs) that maintain the disease, while erythroid precursor populations expand, resulting in excessive red blood cell production. We examined the role of these specific cell populations using a conditional Jak2V617F knockin murine model. We demonstrate that the most imma...
متن کاملJak2V617F myeloproliferative neoplasm stem cells and interferon-alpha
The myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoiesis that arise as a result of aberrant activation of tyrosine kinases and result in the proliferation and accumulation of mature myeloid cells in the blood, bone marrow and spleen. The prototypical MPN, chronic myeloid leukemia (CML) is caused by constitutive activation of ABL kinase occurring as a result of the BCR-ABL f...
متن کاملMyeloproliferative disorders and its associated mutations
Myeloproliferative Neoplasm (MPN) are a clonal disorder in hematopoietic stem cells (HSC). MPN is categorized to 8 subclasses, including chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocytopenia (ET), primary myelofibrosis (PMF), systematic mastositosis (SM), chronic eosinophilic leukemia (CEL), chronic neutrophilic leukemia (CNL), and unclassified myelofibrosis disorde...
متن کاملPhysiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells.
We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In contrast, myeloid progenitor populations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 121 18 شماره
صفحات -
تاریخ انتشار 2013